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ABSTRACT

Chaotic inflation on the Randall–Sundrum type II braneworld is investigated. After introducing

inflation and the braneworld, I derive predictions for perturbations arising from monomial poten-

tials, and compare these with observational constraints from the cosmic microwave background

and large-scale structure, including WMAP and the 2dF galaxy power spectrum. I find results

for any monomial potential in the low-energy (standard cosmology) and high-energy limits, and

results for the quadratic and quartic potentials for any inflationary energy scale. Potentials with

exponent greater than four are strongly disfavoured by the data. For the quadratic potential, the

perturbations generated by inflation taking place entirely in the high-energy regime are further from

scale-invariance than in the low-energy limit; with a quartic potential there is little difference; and

for potentials with higher exponent the trend is reversed, with high energies driving the perturba-

tions nearer to scale-invariance. In the intermediate regime, where the inflationary energy scale is

comparable to the brane tension, there are greater deviations from scale-invariance for the quartic

and quadratic potential than in either the high- or low-energy limits, with the effect particularly

strong for the quartic potential. Constraints on the exponent of monomial potentials are found to be

stronger in the braneworld scenario than in the standard inflationary cosmology.
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Chapter 1

Introduction

The Universe has become much less simple within the last generation. For example, string theory

and M-theory have suggested that space has several additional dimensions. Usually these extra

dimensions are considered to be very small and effectively negligible, but it has recently been

shown that they need not be so small. A simple model which utilises this idea is the Randall-

Sundrum type II braneworld. This has one extra large dimension, leading to a spacetime with

four large spatial dimensions and one time dimension. Our observable Universe is confined to the

brane, which exists in the higher-dimensional bulk spacetime.

In today’s Universe, this braneworld scenario would be effectively indistinguishable from the

ordinary four-dimensional Universe (three spatial dimensions, and one time dimension). However,

higher energies would change the properties of gravity which we observe. Such high energies are

thought to have filled the very early Universe, according to the standard Big Bang cosmology. This

motivates investigations of inflation on the brane. Inflation is an early Universe phenomenon, which

is thought to have left signatures in the cosmic microwave background (CMB). It is hoped that

observations (for example, of the CMB) may make it possible to determine whether the Randall–

Sundrum braneworld is a good description of the Universe in which we live. This is the motivation

behind my thesis.

In Chapter 2, the standard Big Bang cosmology is introduced, along with the concept of in-

flation. Expressions are derived for certain properties of the perturbations generated by chaotic

inflation, and a connection is made with the anisotropies observed in the cosmic microwave back-

ground.

Chapter 3 introduces the braneworld scenario, showing how the cosmological equations are

modified. The effect on inflation is described, and modified expressions for the perturbations are

derived.

In Chapter 4, I derive detailed predictions for a number of different potentials for the scalar field

which drives inflation. The potentials considered are monomial. I find results for any monomial

potential in the high- and low-energy limits, and results for the quadratic and quartic potentials for
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any energies. The predictions are produced in a form which enables comparison with observation.

This comparison is made in Chapter 5, where the observational constraints come from recent ob-

servations of the CMB (including WMAP) and large-scale structure. I compare my predictions with

these observations, and find that monomial potentials come under stronger observational pressure

in the braneworld scenario than in the standard cosmology.

The implications of these results and prospects for further investigation are discussed in the

Conclusions (Chapter 6)—in particular, how it might be possible to evaluate the Randall–Sundrum

braneworld scenario by observations.



Chapter 2

Standard Inflation

2.1 Cosmology in the ordinary

2.1.1 Cosmological principle

Liddle and Lyth write,

The central premise of modern cosmology is that, at least on large scales, the Universe

is homogeneous and isotropic. (Liddle and Lyth, 2000, p. 12)

This premise is known as the cosmological principle, or Copernican principle, after Copernicus,

who popularised the belief that the Sun, rather than the Earth, was at the centre of the Solar System.

The cosmological principle takes the ideas of Copernicus to a new level, stating that we not only

occupy no special position in the Solar System, but that we are also nowhere special in the Universe

as a whole. Roos writes,

The history of ideas on the structure and origin of the Universe shows that mankind has

always put itself at the centre of Creation. As astronomical evidence has accumulated,

these anthropocentric convictions have had to be abandoned one by one. From the

natural idea that the solid Earth is at rest and the celestial objects all rotate around

us, we have come to understand that we inhabit an average-sized planet orbiting an

average-sized sun, that the solar system is in the periphery of a rotating galaxy of

average size, flying at hundreds of kilometres per second towards an unknown goal in

an immense Universe, containing billions of similar galaxies. (Roos, 1994, p. 1)

We can only observe the Universe from one location, and from the Earth the Universe appears

isotropic on large scales. This is most noticeable in the cosmic microwave background (CMB),

which is isotropic to one part in a hundred thousand, after subtracting our motion with respect to

the CMB. But why should we then think that the Universe would appear isotropic to all observers,

irrespective of their location? Could not isotropy at our location merely imply that we are near
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the centre of a spherical distribution of matter? In his best-selling book, A Brief History of Time,

Stephen Hawking addresses this question:

Now at first sight, all this evidence that the universe looks the same whichever direction

we look in might seem to suggest there is something special about our place in the

universe. In particular, it might seem that if we observe all other galaxies to be moving

away from us, then we must be at the center of the universe. There is, however, an

alternate explanation: the universe might look the same in every direction as seen from

any other galaxy, too. This, as we have seen, was Friedmann’s second assumption.

We have no scientific evidence for, or against, this assumption. We believe it only on

grounds of modesty: it would be most remarkable if the universe looked the same in

every direction around us, but not around other points in the universe! (Hawking, 1988,

p. 42)

Thus the basis for the cosmological principle—that we are nowhere special in the Universe—is

an unprovable assumption. This, Hawking claims, is motivated by modesty, but it is more funda-

mentally motivated by one’s religious beliefs. It follows from the belief that life is a purposeless

accident, and that human beings have no special significance in the Universe. The foundation of the

cosmological principle, and hence of modern cosmology, is no less than an assumption of atheistic

naturalism.

Of course, if our existence were purposed by a divine being, as a large proportion of the Earth’s

intelligent inhabitants would claim, it should be no surprise if we do occupy a privileged position

in the Universe—that is, if our Galaxy were near the centre. This alternative assumption (that

the Universe is bounded, in contrast to the cosmological principle’s unbounded cosmos) leads to

a galactocentric cosmology, which would be very different from the standard cosmology. Some

galactocentric models exist, for example, one which has the Universe emerging from within a white

hole (Humphreys, 1994), but they are at an early stage of development.

It is true that the standard cosmology has produced a number of impressive predictions, such

as the existence and structure of the CMB and the abundances of light elements. These lend con-

siderable support to the validity of the cosmological principle. Nonetheless, they do not raise the

status of this principle any higher than ‘plausible assumption’, nor do they negate the legitimacy

of cosmologies founded on different principles. It is only after these alternative models have been

seriously studied that a fair comparison may be made.

In the remainder of this thesis, however, the cosmological principle will be assumed, along with

the standard Big Bang cosmology which follows from it. But it is worth emphasizing the atheistic

assumptions undergirding this model, and the fact that theists (such as myself) have no reason to

make these assumptions.
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2.1.2 Relativistic Cosmology

Before Einstein, the accepted dogma about the Universe was that it was infinite and static. Newton

(1642–1727) understood the stars to be suns like our own, evenly distributed throughout infinite

space. He reasoned (incorrectly) that such a distribution of matter would be stable, allowing a

static Universe. In fact, such a Universe would collapse. Leibniz (1646–1716), a contemporary of

Newton, also rejected the idea of a finite Universe, because he believed that a finite Universe would

necessarily be bounded, and thus have a centre.

With Riemann (1826–1866) came the realization that a finite Universe need not be bounded.

This follows from his work on non-Euclidean geometry, particularly on curved space. Riemann

investigated geometries in which Euclid’s parallel postulate did not hold. With this freedom, it is

possible to have geometries which are both finite and unbounded—analogous to a sphere in two

dimensions—so that travelling in a straight line will eventually bring you back to your starting

point.

Einstein (1879–1955) published his special theory of relativity in 1905, which dealt with ob-

servers moving relative to each other in inertial frames. His monumental work on gravity, the

general theory of relativity, was announced in 1915, making full use of Riemann’s ideas about

geometry. In general relativity, acceleration is indistinguishable from being in a gravitational po-

tential, and both are related to the curvature of space and time. General relativity has formed the

basis of all major work in cosmology in subsequent years.

Initially Einstein was disturbed by the results of his theory, since they suggested that the Uni-

verse could not be static. He therefore added the cosmological term to his equations, the coefficient

of which was a valid constant of integration, known as the cosmological constant. This acted like

a repulsive force, which could be fine-tuned to exactly balance the attractive force due to the matter

in the Universe. However, as was realized some years later, this configuration was unstable. If

there was slightly more matter in the Universe than the cosmological constant could hold in place,

the Universe would proceed to collapse; if there was too little matter, the Universe would expand

without limit. Einstein was later to describe the cosmological constant as his greatest blunder but,

ironically, within the last few years, most cosmologists have become convinced that there is a non-

zero cosmological constant, or something else which produces the same effect (e.g. quintessence).

It was not until after Hubble’s (1889–1953) observations of galactic redshifts in 1925 that the

idea of a non-static Universe was given serious consideration. In the spectra of nearby galaxies,

Hubble observed a trend for galaxies to be moving away from us. The light was, in general, shifted

towards the red end of the spectrum, interpreted as a Doppler shift from a receding galaxy. The

trend was clear, and has been confirmed by observations of a vast number of galaxies since then.

This was taken as compelling evidence for the expansion of the Universe, and Einstein was finally

convinced of this in 1929.

The cosmological principle, plus general relativity, has lead to the standard model of cosmolog-
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ical expansion, commonly referred to by some combination of the names Friedmann, Robertson,

Walker and Lemaître.

Einstein’s equations of general relativity are written as the tensor equation,���������
	��
�����������
�����
(2.1)

where the signs of terms may vary according to differing conventions. Here, the tensor
�����

is the

metric,
�����

is the Einstein tensor (a function of the metric), and
�����

is the energy-momentum

tensor, describing the distribution and properties of the matter and energy.
�

is the famous cosmo-

logical constant, and
�

is Newton’s constant of gravitation. In this equation, and in the rest of the

thesis, units have been assumed in which the speed of light, � , is equal to 1. It will also be assumed

that Planck’s constant, � , is equal to 1.

For a homogeneous and isotropic spacetime, the metric
�����

must be the Robertson–Walker

metric. In a certain coordinate system, this leads to the line element,���� �!����� ��" � �#" � � �#$% '&)(� +*,$.-0/ �#1  2 &43�1  � 15 5*6��7+ ��8:9<;  =7>�@?@ A-CBED (2.2)

(In this form, it has not been assumed that
3

, the constant describing the curvature, may only be

equal to 1, 0 or
& 2

.)
(

is the scale factor, which describes the size of the Universe. Distances

between two points in a homogeneous and isotropic Universe are expressed as the product of the

scale factor (which is a function of time) and the comoving distance (which is constant in time).

The matter/energy content of the Universe is usually assumed to be a perfect fluid with energy

density F and pressure G . In the same choice of coordinates used above, the energy-momentum

tensor for this perfect fluid is ������� � 9<H
I * F � & G � & G � & G -@D (2.3)

The Einstein equations, (2.1), with the Robertson–Walker metric and this energy-momentum

tensor, lead to the following equations. The Friedmann equation describes the rate of expansion:

JK �LNMPO((RQ  � �
	��S F & 3(  � � S � (2.4)

where
J

is the Hubble parameter. The acceleration equation tells us whether the expansion will

accelerate or decelerate: T(( � &VU 	��S * F � S G - � � S (2.5)

The Friedmann and acceleration equations combine to give the fluid equation (or continuity equa-

tion), which represents conservation of energy:

OF � S J * F � G - �XW D
(2.6)

If we know the density and pressure of the constituents of the (homogeneous) Universe, these

equations enable us to precisely describe how the Universe evolves.
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2.1.3 The Big Bang

An expanding Universe, when taken back in time, would have been much more dense. What hap-

pens when we go back in time as far as possible, to when today’s observable Universe was infinitely

dense and infinitesimally small? This ‘singularity’ is known as the Big Bang. The ‘bang’ itself is

somewhat blurry, since no one really knows what the properties of such a high-density Universe

would be. This is because before the Planck time, general relativity must be combined with quan-

tum mechanics—something which has not yet been achieved. However, the time at which the

‘bang’ would have happened is labelled as the time
$ ��W

.

The situation at very early times (before, say,
$ � 2 W�� �  

s) is even more blurry when one

considers inflation, as we will shortly. In one model of inflation, chaotic inflation, many Universes

could have existed for vast eons of time before
$ �!W

!

However, after inflation the standard cosmological model is much clearer, and will be outlined

in this section.

Whether or not inflation happens, at
$ � 2 W �  

s we find that the Universe would have been

dominated by relativistic particles (‘radiation domination’), and would have had a temperature of

roughly
2 W����

K. There would have been photons, neutrinos, electrons, positrons, protons and neu-

trons, all in thermal equilibrium. At
$�� 2 W5W

s, nucleosynthesis takes place. This is when the

temperature has dropped sufficiently (to roughly
2 W��

K) to allow protons and neutrons to combine

to form atomic nuclei, predominantly hydrogen and helium-4. The density of radiation falls more

quickly than that of matter, so there comes a point when the matter becomes dominant. This would

have happened at
$	� 2 W�


yr. At this time, the energy of the photons is still sufficiently high to

prevent electrons from combining with atomic nuclei to form atoms. When the temperature had

dropped to around 3000 K (after about 350 000 years), this would no longer have been the case, and

atoms were formed. This is the epoch of decoupling, and recombination, and corresponds to the

formation of the cosmic microwave background (see Section 2.2.4).

After this point, the Universe is essentially in the same physical state as it is now. Any inho-

mogeneities in the matter would grow, forming stars and galaxies, although this process is not well

understood at present.

The problem at this stage is: where did the inhomogeneities come from? Why is the Universe

not perfectly smooth? This question was eventually answered with the idea of inflation.
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2.2 Inflation in the ordinary

2.2.1 Motivation

Before the 1980s it was realized that there were certain problems with the standard Big Bang cos-

mology. It appeared that the initial conditions1 were somewhat surprising. These problems were

resolved with the concept of inflation. However, the main attraction of inflation is that it provides

a mechanism for generating structure.

Inflation is the name given to a very short period in the early Universe during which the expan-

sion was accelerating. This corresponds to
T(�� W

, or, equivalently,
��*6( J -����#$�� W

. Hence the

comoving Hubble length,
J � � ��(

, is decreasing during inflation.

An inflationary model was first proposed by Starobinsky (1979), but this was a complicated

model, and did not spread outside the Soviet Union at that time. Inflation was properly invented

in 1981, when Alan Guth independently published a paper, and coined the term ‘inflation’ (Guth,

1981). In that paper, he proposed inflation as a solution to the problems with the standard Big Bang

cosmology, which will be discussed briefly below. These were primarily the horizon and flatness

problems, but he also mentioned the monopole problem.

The horizon problem is based on the observed isotropy of the cosmic microwave background

(see Section 2.2.4), which exhibits a black-body spectrum from all directions characteristic of pre-

cisely the same temperature, 2.73 K, to one part in a hundred thousand. This implies that these

points in the sky were once in thermal equilibrium. But how can this be, if they have not had time

to communicate since the Big Bang? Two points can only be in thermal equilibrium if the distance

between them is less than the particle horizon, roughly given by � J � �
, where � is the speed of

light, and
J � �

is a rough estimate of the age of the Universe. During inflation,
J

is almost con-

stant, so inflation rapidly increases the size of the Universe while keeping the horizon scale roughly

constant. (This is equivalent to the comoving Hubble length decreasing.) So the whole of today’s

observable Universe could have been within the horizon before inflation started. This is illustrated

in Fig. 2.1.

The flatness problem concerns the observed flatness of the Universe, most noticeable in the

cosmic microwave background. A flat Universe corresponds to
3 � W

in the Friedmann equation

(2.4). This is equivalent to ���	�
� L � � ��� � 2
with the density parameters defined as ��
 L F�
 � F�� ,

where F � L S J  �
	�� �
(2.7)

is the critical density. The density parameter for the cosmological constant is defined as ��� �� � S J  
. In Friedmann’s models, where the cosmological constant is zero, a Universe of critical

density is the borderline between a closed Universe, which will collapse, and an open Universe,

1Initial conditions here refers to the conditions at some early time when the energy scale was comfortably below the

Planck scale. Conditions at energies higher than this are not accessible using classical general relativity, since quantum

effects are thought to dominate.
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Inflation

Rad
iat

ion
Matter

LambdaPresent horizon scale

ln a

Reheating

lnH   /a−1

Figure 2.1: The comoving Hubble length against the scale factor (from Liddle and Leach, 2003). Different

epochs in the history of the Universe are labelled, finishing with domination by radiation, matter and then

the cosmological constant, Lambda. It can be seen that the present horizon scale was also the horizon scale

at some time during inflation. This explains the horizon problem, regarding points separated today by more

than the horizon having been in causal contact in the early Universe.

which will expand forever. With a positive cosmological constant, however, it is possible to have a

closed Universe which will expand forever.

From Eq. (2.4), we obtain,

� � �
� & 2 � � � � � & 2 � 3(  J  D (2.8)

Now, in a Universe dominated by matter or radiation, the expansion will always be decelerating. SoO(  � (  J  
will decrease with time. Hence, unless � � �
� is precisely equal to 1 for all time, it will

always be moving away from 1. A flat Universe is therefore unstable, and it begs some explanation

as to why it was flat initially.

Inflation solves the flatness problem because, during inflation,
( J

is increasing, so the Universe

is driven towards a flat state. The Universe can be made arbitrarily flat by invoking a suitably

lengthy period of inflation. This is analogous to a balloon, which, though not flat, may be inflated

so that a particular area of its surface appears flat.

The monopole problem concerns relic particle abundances predicted by grand unified theories

(GUTs) of particle physics. These imply the existence in the very early Universe of certain unusual

particles, most famously of magnetic monopoles (but also of particles such as gravitinos and moduli

fields) which should exist today. These particles would have been non-relativistic for long enough

to enable them to become dominant over radiation in the Universe. However, such particles have

not been found. This fact may be explained by inflation, which would have diluted the density of

such particles to make them so rare that we would not expect to find them.

As well as making the Universe highly flat and homogeneous, inflation also introduces inho-

mogeneities. This is because the microscopic quantum fluctuations, which exist everywhere, are
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rapidly expanded to macroscopic sizes, and ‘frozen in’. It is these fluctuations which form the

seeds of structure formation in the subsequent evolution of the Universe.

Guth’s model became known as old inflation. There were various problems with it, for example,

that it produced too much inhomogeneity, and it was soon abandoned. New inflation was proposed

independently by Albrecht and Steinhardt (1982) and by Linde (1982), but suffered a similar fate

due to various problems, for example, that it requires an extremely flat potential for the scalar field

(see below). Today there is a huge number of models of inflation. One popular model, which has

lasted for over 20 years and which will be the focus of this thesis, is chaotic inflation, also proposed

by Linde (1983).

GUTs predict the existence of scalar fields, associated with the splitting (symmetry breaking)

of the fundamental forces (gravity, the strong force, the weak force, and the electromagnetic force),

which would have been unified as one force before the Planck time (
2 W � 
 �

seconds). Inflation is

thought to have been driven by such scalar field, commonly called the inflaton, which may be a

result of symmetry breaking, but it may be an independent field not directly related to symmetry

breaking. In chaotic inflation, the scalar field may take different forms and values at different

points, due to quantum fluctuations. Only those regions which have a suitable scalar field can

undergo inflation. This leads to the idea of a multiverse, where our observable Universe is just one

of perhaps infinitely many disconnected regions which have undergone inflation.

In fact, this can lead to an unending ‘self-reproducing inflationary universe’ (Linde, 1994), a

concept known as eternal inflation. In this scenario, the whole universe (or multiverse) develops

as a complicated fractal-like structure, with inflationary ‘bubbles’ emerging inside regions which

have already inflated.

2.2.2 Dynamics of inflation

From the Friedmann equation (2.4), the rate of expansion is approximately proportional to the

square root of the energy density (neglecting the cosmological constant). As will be shown below,

the energy density of a scalar field decreases much more slowly than the energy density of normal

matter or radiation, and may remain almost constant, leading to exponential expansion (since con-

stant
J  

implies
( ������� ), as found in a Universe dominated by a cosmological constant. This is

what happens during inflation, when the scalar field acts like an effective cosmological constant.

The value of the scalar field changes until it reaches a value corresponding to a minimum of

the potential energy of the field. (In the simplest models, this minimum corresponds to the scalar

field vanishing.) The scalar field is said to ‘roll down’ the potential. Fig. 2.2 shows an example

of a simple potential for a scalar field. Once the scalar field nears the minimum of the potential, it

begins to oscillate about this point, causing a period of reheating.

A real scalar field,
?

, is described by its Lagrangian density,

� � 2
�
	
� ? 	 � ? &�� * ?�- � (2.9)
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Figure 2.2: An example of a scalar field, with a quadratic potential, ������� . The scalar field ‘rolls down’

the potential towards the minimum.

where
�

is the potential. Taking the field to be homogeneous, this is used to obtain the energy-

momentum tensor, from which the density and pressure of the scalar field (respectively) may be

found (Liddle and Lyth, 2000, p. 332):

F � 2
� O?  � � * ?�- � (2.10)

G � 2
� O?  &�� * ?�- � (2.11)

During inflation, the curvature term of the Friedmann equation (2.4) rapidly becomes negligible,

and we neglect the cosmological constant. With F for the scalar field, this gives,JK � �
	S��  	 M 2� O?  � � Q �
(2.12)

where
� 	 � � � ��
  

is the Planck mass.

From the fluid equation (2.6), OF � & S J * F � G - � (2.13)

we obtain, T? O? � � ��@? O? � & S J O?  � (2.14)T? � �
� � & S J O? � (2.15)

where the prime denotes differentiation with respect to
?

.

Inflation takes place when
T( � W

. So (neglecting the cosmological constant) the acceleration

equation (2.5) implies that, G�� & F S � (2.16)
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during inflation. With a scalar field, this is equivalent to

O?  � � D (2.17)

If we impose slightly stronger conditions on the scalar field, the equations become much easier

to solve. (2.17) says that the field varies more slowly than a certain limit. We therefore make

approximations on the scalar field, stating that it varies slowly. These are the slow-roll conditions:2
� O?@ �� � �

(2.18)
� T? � � � S J O? � D (2.19)

We can now see why a slowly-rolling scalar field gives the expansion rate referred to above. The

fluid equation, with O? being small, implies that OF is also small, i.e., that the energy density of the

scalar field is roughly constant. This gives a near-exponential rate of expansion.

With the slow-roll approximation, Eqs. (2.12) and (2.15) give us the two equations to describe

the dynamics of the inflationary expansion,J
 �
�
	S��  	 � � (2.20)S J O? � & � � �

(2.21)

where an approximate equality sign denotes equality under the slow-roll approximation.

The slow-roll conditions, (2.18) and (2.19), are used to place constraints on the slow-roll pa-

rameters, defined as follows:

� L �  	2�� 	 M � ��!Q  � (2.22)

� L �  	�
	 M � � �� Q D
(2.23)

During slow-roll inflation, (2.18) implies that � � 2
and (2.19) implies that

� � � � 2
.

We also note that Eqs. (2.20) and (2.21) imply

� � & OJJ  � (2.24)

and that OJJ  � T(( 2J  & 2 D
(2.25)

Hence inflation takes place by definition whenOJJ  � & 2 �
(2.26)

i.e., when ��� 2
. This is why the end of inflation is often defined to be �

� 2
, for the purpose of

predicting perturbations, but the definition is not exact.
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The amount of inflation is quantified by the number of � -folds, � , where an � -fold is an increase

in the size of the the Universe by a factor of � . Thus,

�
� �<; (��(�� (2.27)� ���	���


��(( (2.28)� � � �
� 
 J �#$

(2.29)

� ���
���

S J  S J O? �@? (2.30)

� & �
	
�  	 � � �� 


�
� �
�@? �

(2.31)

from Eqs. (2.20) and (2.21). The subscripts ‘i’ and ‘f’ denote the initial and final values of the

relevant quantities.

At the end of inflation, various events take place, which recover the conditions in the Universe at

this stage of the standard Hot Big Bang expansion. This is the period of reheating, the usual model

of which has the energy density of the inflaton field being converted into matter and radiation. There

are alternative models of reheating, one of which is curvaton reheating, which has recently been

proposed, and will be mentioned briefly in Chapter. 5. A detailed account of reheating will not be

presented here, as it does not directly affect the production of density perturbations.

2.2.3 Growth of structure

As well as generating large-scale homogeneity in the Universe, inflation also fills it with inhomo-

geneities. These seeds of structure are formed from random quantum fluctuations in the scalar field.

The perturbations generated are Gaussian and adiabatic. In this section, we follow the definitions

and derivations of Liddle and Lyth (2000).

In the inflating region, the scalar field
?

, is taken to consist of a homogeneous component,
?��
*,$.-

and a small perturbation, � ?�*�� � $ - . The resulting (inhomogeneous) scalar field,
? � ? � � � ? , will

obey T? � S J O? &��  ? � � � �XW'�
(2.32)

where
�  � ( �  �� 	  � 	 "  � . Using a Taylor expansion,

� � * ?�� � � ?�- � � � * ?�� - � � ? � � � * ?�� - , and

recalling Eq. (2.15) for the homogeneous part of the field, we obtain,T� ? � S J O� ? &��  � ? � � � � * ?�� - � ? ��W D
(2.33)

With a Fourier expansion, � ?R*�� � $.- ����� � ? � *,$.- � ���  � (2.34)
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each Fourier component therefore satisfies,T� ? � � S J O� ? � � M 3 ( Q  � ? � � �
� � * ? � - � ? � �!W D
(2.35)

A given fluctuation will be ‘frozen in’ when its size exceeds the horizon scale. This occurs when3 � ( J
, and the moment at which the fluctuation is frozen in is called horizon crossing or horizon

exit.

If the horizon crossing takes place during slow-roll inflation, the condition
� � � � 2

implies that
� � � � J  

(cf. Eqs. [2.20] and [2.23]). Hence, until a while after horizon crossing, we may neglect

the final term on the left-hand side of Eq. (2.35). (Before horizon crossing,
3 � ( J

, so the term

may be neglected during this period.)

After the fluctuation has left the horizon, the quantity we are most interested in is the curvature

perturbation,
�
�
. This is a change in the spatial curvature produced by the perturbation in the

scalar field, and is defined, for a flat Universe (
3 �XW

) with zero cosmological constant, byJ  *�� � $ - L �
	��S F *�� � $ - � �S �  � *�� � $.-@D (2.36)

It has the property that it remains almost constant while well outside the horizon. The value it takes

during this period is called its primordial value. The primordial curvature perturbation satisfies

�
� � & / J O? � ? � B

��� ���
�

(2.37)

where the time
$��

is a few Hubble times after horizon crossing, when the perturbation has settled to

a constant value.

The spectrum of the curvature perturbation is given by

�
	 * 3�- � /5M J O? Q � � * 3�- B  ��� � � � (2.38)

where the spectrum for
?

is given by

� � * 3 � $ � - � M J *,$�� -� 	 Q  D (2.39)

During slow-roll inflation, the variation in
J

, and also in O? , is negligible over a few Hubble times,

so we may evaluate these quantities at horizon crossing, rather than at
$ � $ �

. Hence,

��	 * 3�- � /5M J O? Q M J� 	 Q B  
 � � � D
(2.40)

We define a quantity, ��� (also known as ��� , where ‘H’ stands for ‘horizon entry’), which is an

approximate measure of the root mean square value of the total density perturbation, � L � F � F ,

when it re-enters the horizon. This is related to the spectrum of the curvature perturbation by

�  � � U��� � 	 �
(2.41)
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where the subscript ‘S’ stands for ‘scalar’.

The fluctuations in the inflaton field will also produce tensor perturbations, i.e., gravitational

wave perturbations. These have spectrum

��������� * 3�- � �
�  	 M J� 	 Q  	����� 
 � � � D

(2.42)

In the following, we use a related quantity, ��
 , where the subscript ‘T’ stands for ‘tensor’. This is

defined by

�  
 � �
	
��� �������
� D

(2.43)

The two are almost identical, since
�
	 � ���

. (The normalization is essentially arbitrary: this choice

corresponds to �  
 � �  � � � in the slow-roll approximation.)

In almost all models of inflation, it is possible to take the spectra to obey simple power laws,

with spectral indices, � and ��
 , defined by

�  � � 3�� � � �
(2.44)

�  
 � 3 ��� D
(2.45)

For the scalar perturbations, the special case �
� 2

is called the scale-invariant or Harrison–

Zel’dovich spectrum.

It is worth noting that recent observations from the WMAP satellite have suggested that the

scalar spectral index may vary, or run, from �
� 2

on large scales to � � 2
on short scales (Peiris

et al., 2003). This has led to attempts to generate perturbations with this property from inflation,

e.g., Chung et al. (2003). But it has also been claimed that the current data are insufficient to

measure the running of � (Leach and Liddle, 2003b). In all that follows, the scalar spectral index

will be assumed to be constant.

Under the slow-roll approximation, the spectrum of scalar perturbations may be found using

Eqs. (2.20) and (2.21) to be (with all expressions evaluated at
3 � ( J

)

�  � � U��� /
M J O? Q M J� 	 Q B  (2.46)� � J��
��� 	  * S J O?=-  (2.47)

� ���� 	  M �
	S��  	 � Q � 2* & � � -  (2.48)� � 2 � 	
� ��� �	

� �
� �  � (2.49)
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and the spectrum of tensor perturbations to be

�  
 � U��� 	 �  	 JK (2.50)

� U��� 	 �  	 M �
	S��  	 � Q (2.51)� S �
� ��� 
	

� D
(2.52)

The ratio between the tensor and scalar perturbations, defined as

� L 2�� �  

�  � � (2.53)

is therefore, under the slow-roll approximation,

� � 2�� M S �
� ��� 
	

� Q M � ��� �	� 2 � 	 � �  
� � Q (2.54)

� 2�� �  	2�� 	 M � �� Q  (2.55)� 2�� � � (2.56)

where � is one of the slow-roll parameters, defined in Eq. (2.22).

We may also find an expression for �
& 2

under the slow-roll approximation. It is,

�
& 2 � � �<; �  �� �<; 3 (2.57)� � �<; �  ��@? �@?� �<; 3 (2.58)

� M � �<; � ��@? & � �<; � �  �@? Q �@?� �<; 3 D (2.59)

At
3 � ( J

, we have
� �<; 3 � � �<; *6( J -

.
J

is almost constant, and, fixing the end of inflation,

Eq. (2.27) implies that
� �<; ( � � & �

� . Hence,� �<; 3 � & �
� (2.60)

� & �
	
�  	 �� � �@? � (2.61)

from Eq. (2.31). Hence,

�
& 2 � & M S � �<; �� ? & � � � ; � ��@? Q �  	�
	 � �� (2.62)� & M S � �� & � � � �� � Q �  	�
	 � �� (2.63)

� & � �  	2�� 	 M � �� Q  � � �  	�
	 M � � �� Q (2.64)� & � � � � � D (2.65)
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Finally, an expression may be found for the tensor spectral index, � 
 . From its definition in

Eq. (2.45),

� 
 � � �<; �  
� �<; 3 (2.66)� � �<; �  
�@? �@?� �<; 3 (2.67)

�
� �<; ��@? �@?� �<; 3 (2.68)� & � �� �  	�
	 � �� (2.69)� & � � D (2.70)

Hence we have a ‘consistency’ equation,

� � & �
� 
 D (2.71)

2.2.4 Cosmic microwave background

In 1965, Penzias and Wilson made a discovery of great significance to cosmology: the cosmic

microwave background radiation (CMB). This takes the form of microwave radiation which we

observe coming from all directions in the sky, exhibiting a nearly perfect black-body spectrum with

characteristic temperature of 2.73 K. Such radiation is characteristic of a system which is in thermal

equilibrium. Black-body radiation also has the property that it remains as black-body radiation

as the Universe expands—although the temperature decreases. (The energy density of black-body

radiation of temperature
�

obeys � � � 

, and, in a radiation dominated Universe, � � 2 ��( 


.

Hence,
� � 2 ��(

.) So the CMB points to a period when the Universe was in thermal equilibrium at

a higher temperature. It can be worked out that the CMB would have been formed about 350 000

years after the Big Bang, when the Universe was in thermal equilibrium at approximately 3000 K

(Liddle, 2003, pp. 79, 87). (The Universe would have been roughly one thousandth of its current

size, since
( � 2 � �

, and hence the scale factor would have been
� D � S � S W5W5W � 2 � 2 W5W5W

of its value

today.) This corresponds to the period of recombination, when the energy of the radiation dropped

sufficiently to allow electrons to combine with protons to form atoms. The Universe changed from

being opaque to being transparent as the radiation ‘decoupled’ from the matter, and the photons

began to travel freely through space. It is these photons which we now observe in the CMB. The

CMB is also called the surface of last scattering, since we observe it as a surface, and since it was

formed at the time when the photons were last scattered by the matter in the Universe.

Although the CMB is highly isotropic, there are tiny anisotropies, first discovered in 1992 by

the NASA’s COBE (COsmic Background Explorer) satellite. The anisotropies are equivalent to a

variation in the characteristic temperature of only
� �� �

2 W ��� D
(2.72)
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Figure 2.3: Angular power spectrum of the CMB, from the WMAP Science Team (Hinshaw et al., 2003).

The data are plotted with one-sigma errors. The solid line shows the best-fit model, with the grey band

showing the one-sigma uncertainty in this. The multipole moment, � , corresponds to an angular scale of

approximately �������	��� . Hence the first peak corresponds to an angular scale of roughly one degree.

It is these ‘ripples’ which are thought to reflect the inhomogeneities in the early Universe which

eventually led to the formation of stars and galaxies. They also allow us to test predictions of

inflationary models.

The signatures of the early Universe are seen in the CMB using the angular power spectrum,

which shows how the size of the anisotropies varies with different angular scales. Fig. 2.3 shows

the angular power spectrum from NASA’s recent Wilkinson Microwave Anisotropy Probe (WMAP)

mission2.

The angular power spectrum is found by decomposing the anisotropies into spherical harmon-

ics, 
���
 *67 � ?�- , the analogue of a Fourier series for the surface of a sphere. This is used to define the

multipoles,
( ��
 , of the anisotropy, (Liddle and Lyth, 2000, p. 116)

� �� *67 � ?�- � �
��


( ��
�
���
 *67 � ?�-@D (2.73)

The features we are looking for are independent of orientation, so we take an average of the coeffi-

cients over
?

to obtain the radiation angular power spectrum,

� � L�� � ( ��
 �  �� D (2.74)

� � corresponds to an angular scale of approximately
2 �
W�� ���

, and a large value of
� � indicates large

anisotropies on that scale.
� � 2

corresponds to the dipole moment, due to our motion with respect

2http://map.gsfc.nasa.gov/
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to the CMB. This is usually ignored, as it does not represent intrinsic anisotropy in the CMB, so

plots of the power spectrum start at
� � �

, as in Fig. 2.3.

The horizon scale at decoupling would have been 90 h
� �

Mpc, corresponding to
� � � W

(Liddle

and Lyth, 2000, p. 120). At higher values of the multipole moment,
�
, i.e., smaller angular scales,

the points being compared would have been in causal contact at the time of decoupling. Hence such

anisotropies may reflect physical processes taking place at this time. The maximum size of these

features would have been the Hubble length at the time of decoupling, which subtends a certain

angle to us as we see it in the surface of last scattering. This angle depends most strongly on the

geometry of the Universe—whether it is flat, open or closed. This angle is related to the location of

the first acoustic peak in the power spectrum, which is at
� � � W5W

in Fig. 2.3, corresponding to an

angle of roughly one degree. Recent observations of the CMB using this first peak have suggested

that the Universe is very flat: the WMAP team found that ��� �
� � 2 D W ��� W D W �
(Bennett et al., 2003).

On the other hand, smaller values of
�

correspond to structure present in the Universe before

decoupling, since the points in the CMB separated by angular scales this large were out of causal

contact at the time of decoupling. Probing such large scales enables us to investigate the primordial

perturbations in the Universe. COBE made observations on such large scales to high precision. This

has enabled a constraint to be placed on the amplitude of scalar perturbations, as has been done by

Bunn et al. (1996). The COBE normalization is found to be (Liddle and Lyth, 2000, p. 248)

� � � 2 D � U�� 2 W ��� � (2.75)

for a scale-invariant spectrum (which is why
3

does not appear in the expression). They found a

more complicated expression in the case of a spectrum which is not scale-invariant, but the normal-

ization is generally very similar to that given, particularly for a flat Universe and a nearly scale-

invariant spectrum.

From the WMAP data, combined with other data sets including the 2dF galaxy redshift sur-

vey, Leach and Liddle (2003b) have found constraints on inflationary parameters. They relate the

spectral tilts, �
& 2

and � 
 , to their slow-roll parameters, using equations equivalent to Eqs. (2.65)

and (2.70). Hence, observations constraining these indexes may be used to test inflationary mod-

els. It is this analysis which is used in Chapter 5 to test braneworld models of inflation, where the

observational constraints used in the plots are taken from that paper.



Chapter 3

Braneworld Inflation

3.1 Cosmology on the brane

3.1.1 The braneworld

Physics in the twentieth century had a problem. Two of the most important theories in physics—

quantum mechanics and general relativity—were formulated and found to be contradictory. General

relativity describes a universe which is very smooth (if not flat), and quantum mechanics suggests

that things are very ‘lumpy’ on small scales. These problems have been (sketchily) resolved by

new theories: superstring theory (or string theory) and the related and more recent M-theory,

which seeks to unify various string theories. Essentially the difficulties with quantum mechanics

and general relativity vanish when one takes into consideration the spatial extent of the strings,

which are believed to be the fundamental constituent of the Universe. It turns out to be impossible

to make measurements on the scales on which things would appear ‘lumpy’ (that is, below the

Planck length,
2 D �

�
2 W � � �

m). In the words of Brian Greene,

But the whole conflict between general relativity and quantum mechanics arises from

the sub-Planck-length properties of the spatial fabric. If the elementary constituent

of the universe cannot probe sub-Planck-scale distances, then neither it nor anything

made from it can be affected by the supposedly disastrous short-distance quantum

undulations. . . . Therefore . . . one can even say that the supposed tempestuous sub-

Planckian quantum undulations do not exist. (Greene, 1999, p. 156, emphasis in origi-

nal)

However, these theories introduce new complications to the Universe: extra dimensions. The

reason is that they are supersymmetric, meaning that they are symmetric not only regarding position,

velocity and gravity, but also regarding the quantum mechanical spin of particles. Supersymmetric

theories (e.g., superstring theory—hence the name) are naturally formulated in more than four di-

mensions. String theory gives the Universe ten dimensions in total (nine spatial and one time) and
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M-theory has an eleven-dimensional Universe (ten spatial, and one time).

The idea that there are more dimensions than the familiar four (one time and three spatial)

was not new when string theory was being developed towards the end of the twentieth century. It

had in fact been proposed in 1919 by Kaluza, who, in a letter to Einstein, found that formulating

general relativity in five dimensions (rather than four) led to an elegant way of combining of general

relativity with Maxwell’s electromagnetic theory. This research was published by Kaluza (1921),

and was developed by Klein (1926), but, after meeting some serious problems, research into extra

dimensions largely ceased. The extra dimensions in the work of Kaluza and Klein, as well as in

string theory and M-theory, are considered to be very small, or compact. This is analogous to a hose-

pipe, which has an extended dimension—its length—and a compact dimension—its circumference.

However, it has recently been suggested (Arkani-Hamed et al., 1998; Antoniadis et al., 1998)

that if the ordinary matter fields are confined to the three usual extended dimensions only, with

gravity allowed to pass through all of the dimensions, then the extra dimensions need not be so

small, and may be very large, even infinite. The three-dimensional space on which the matter exists

is termed the brane, and the higher-dimensional space is called the bulk.

During the last few years, the case with one of the extra dimensions being large (perhaps un-

bounded) has received a significant amount of attention. This leads to a Universe of five significant

dimensions (four spatial, and one time). Randall and Sundrum (1999a) proposed a model with

two branes, one of which contains the standard model fields. They then proposed a second model

(Randall and Sundrum, 1999b), which has a single brane. (This is equivalent to the first model,

but with one of the original branes removed to infinity.) This is the Randall–Sundrum type II

braneworld, hereafter called the braneworld scenario, which forms the basis for the rest of this

thesis. It is illustrated pictorially in Fig. 3.1.

3.1.2 Braneworld cosmology

As would be expected, the braneworld scenario modifies the Einstein equations for gravity on the

brane. This is because the gravitational fields are allowed to propagate through an additional large

dimension. The equations of general relativity must be investigated in this five-dimensional case, to

enable us to predict the form which gravity will take on the brane. A crucial question will be whether

the resulting equations allow us to recover the familiar four-dimensional (effective) Einstein gravity

on the brane, for all ordinary situations. If not, we must reject this braneworld scenario, since the

standard four-dimensional gravitational equations have been tested to high precision.

The cosmological equations on the brane have been derived using two methods (see Brax and

van de Bruck, 2003). Shiromizu et al. (2000) derive the effective four-dimensional gravitational

equations without any specific assumptions about the brane, and then investigate these equations in

particular braneworld models. They recover the standard Einstein equations in the low-energy limit.

In the special case where the bulk is exactly anti-de Sitter, i.e., has a negative cosmological constant
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Figure 3.1: The Randall–Sundrum type II braneworld. Our Universe is confined to a ‘brane’ with three

spatial dimensions (shown as two here) with an additional large dimension, shown by the arrow. The full

spacetime, with four large dimensions and one time dimension, is called the ‘bulk’.

only, they find that the matter on the brane will be spatially homogeneous. The other method is

simpler, having more restrictions from the outset, but leads to results in agreement with the first.

It also leads to a ‘Friedmann equation’ which reduces to the standard Friedmann equation at low

energies. I will present a brief description of this second method here, following Binétruy et al.

(2000b).

The fifth dimension is labelled by � , and the brane is located at � � W
. The five-dimensional

metric is assumed to be of the form,���  � ������ ��" � �#" �
(3.1)� � ��� �#" � �#" � ���  � �  (3.2)� &

�
 5*	� � � -%�
�# � (� 
*	� � � -�� ��
 �#" � �#" 
 ���  5*	� � � -%� �  � (3.3)

where upper case italic indices run from 0 to 4, Greek indices run from 0 to 4, and lower case italic

indices run from 1 to 3.
� ��
 is maximally symmetric (as in the Robertson–Walker metric). This is

the metric for a homogeneous and isotropic Universe on the brane.

In order to obtain the equations for the evolution of
(

, the scale factor, the Einstein equations

need to be solved for this metric and some energy-momentum tensor. The Einstein equations in five

dimensions take the usual form, ������4���  ������ D
(3.4)

We take the bulk to be anti-de Sitter spacetime, having a negative cosmological constant,
�
� . Hence
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the bulk has pressure, G�� � & F�� � & �
� . The energy-momentum tensor is therefore taken to be� � �)� � 9 H
I / * & F�� � G�� � G�� � G�� �.W - � * � -� � * & �

�
� & �

�
� & �

�
� & �

�
� & �

�
- B �

(3.5)

where F�� and G�� are the energy density and pressure on the brane respectively.

Einstein’s equations with this energy-momentum tensor, along with the metric shown above,

lead to the following equation,M O(
�
( Q  � 2

�
�  �

�
� M ( �� ( Q  & 3(  � �( 
 � (3.6)

where a prime denotes differentiation with respect to � and
�

is a constant of integration. On

the brane, one needs to worry about the discontinuity. This is dealt with using certain junction

conditions (Binétruy et al., 2000a), leading to an equation for the brane,M O(( Q  � �  
�
�
�
� � 
S � F  � � �( 
 & 3(  � (3.7)

where � has been set to be equal to 1, by a suitable transformation to the time variable.

If the brane is allowed to possess a constant energy density, 	 , called the brane tension, as well

as ordinary matter, we have, F�� � F � 	 D (3.8)

This gives M O(( Q  � �  
�
�
�
� � 
S � 	  � � 
2 � 	�F � � 
S � F  � �( 
 & 3(  D (3.9)

The first two terms on the right hand side behave like an effective cosmological constant on the

brane, which we may define as (Shiromizu et al., 2000),�

S L �  

�
�
�
� � 
S � 	  D (3.10)

If we also write �
	
�  



L �
	�� L � 
 	� �
(3.11)

where
�

 is the effective Planck scale and

�
is Newton’s constant on the brane, we obtain a

‘Friedmann equation’ of the form,J  � �

S � �
	S��  



F 
 2 � F� 	�� � �( 
 & 3(  D (3.12)

Binétruy et al. (2000b) also find that energy is conserved on the brane, i.e., that the fluid equation

is still valid: F�� � S O(( * F�� � G�� - �XW D
(3.13)

The fundamental Planck scale,
�
� , is related to the coupling constant,

�
, by (Binétruy et al.,

2000b)
�  � �
	  

� �
�

�
(3.14)
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so (Maartens et al., 2000)
�


��� SU 	 M �  

�� 	 Q � �
D

(3.15)

Thus the fundamental Planck scale is different to the four-dimensional effective Planck scale,
�


�2 D �

�
2 W � �

GeV. In order to get an order-of-magnitude estimate for its value, we need a constraint on	 . We must have the standard cosmological expansion for temperatures less than roughly 1 MeV, or

nucleosynthesis will be affected. As will be seen below, this implies that we have F � 	 for such

energies. The energy density is related to the temperature by F � � 

(cf. Liddle and Lyth, 2000,

p. 19), so 	�� F � (1 MeV)

 � 2 W � �  

(GeV)



(Copeland et al., 2001). Hence

� �
�

� � U 	S � 	 � 
 (3.16)

� � U 	S 2 W � � *����
	 -  2 W � � ���
	 � (3.17)
�
� � 2 W 
 ���
	 D

(3.18)

The fundamental Planck scale may therefore be significantly below the effective Planck scale. This

could provide a solution to the hierarchy problem (Arkani-Hamed et al., 1998): the puzzle as

to why the Planck scale and the Weak scale differ by some 16 orders of magnitude. A smaller

fundamental Planck scale would alleviate this discrepancy.

The four-dimensional cosmological constant is usually fine-tuned to be zero in the braneworld

scenario. This is necessary in order to produce static solutions (Brax and van de Bruck, 2003), and

is achieved by balancing
�
� and 	 to satisfyW �X�

�
� �  
� 	  D (3.19)

Small deviations from this fine-tuning can lead to a small effective cosmological constant which

would dominate in later periods of the evolution of the Universe, as favoured by recent observations.

This fine-tuning is the braneworld version of the cosmological constant problem, i.e., the problem

of why the cosmological constant takes the particular value it is observed to have.

The
� ��( 


term is known as the dark radiation, since it decays in the same way as radiation (the

energy density during radiation domination is proportional to
( � 


). If the bulk spacetime is anti-de

Sitter, then this term is equal to zero (Brax and van de Bruck, 2003). However, as we shall see, this

term may be neglected during inflation.

Neglecting any dark radiation, Eq. (3.12) reduces to the usual Friedmann equation when
2 �F � � 	 , i.e. at low energies. So in order to discover whether this is a realistic description of the

Universe, high-energy situations must be investigated.

The energy density, F would have been much higher in the early Universe. So by investigating

signatures of physical processes at work in the early Universe, it may be possible to detect brane-

world effects. It therefore makes sense to consider inflation on the brane. During such a rapid

period of expansion, the final two terms in equation (3.12) would quickly become negligible, as the



3.2 Inflation on the brane 25

scale factor,
(

, increases rapidly.
�

 is also taken to be negligible. This gives rise to a ‘Friedmann

equation’ of the form, J  � �
	S��  


F 
 2 � F� 	 � � (3.20)

which will form the basis of our investigations of braneworld inflation.

3.2 Inflation on the brane

At low energies, i.e., when F � 	 , inflation in the braneworld scenario behaves in exactly the same

way as standard inflation. But at higher energies we would expect the dynamics of inflation to be

changed. In this section, the details of this modification will be investigated. In order to do this, we

will follow the derivations in Section 2.2 but with the modified Friedmann equation (3.20).

3.2.1 Dynamics of inflation

We first find the condition required for inflation to take place. The fluid equation, (3.13), still holds,

so we have, OF � & S J * F � G - � (3.21)

where F and G are the energy density and pressure respectively of the scalar field, defined in

Eqs. (2.10) and (2.11). Differentiating Eq. (3.20) with respect to time gives,

� J OJ � � J M T(( & O(  (  Q � �
	S��  

�� OF � OF F	�� (3.22)� & �
	 J
�  



* F � G - 
 2 � F	 � �
(3.23)

by the fluid equation. Hence we obtain an acceleration equation,T(( � & U 	�  



* F � G - 
 2 � F	 � � J  (3.24)� & U 	�  



/ * F � G - 
 2 � F	 � & �S F 
 2 � F� 	 � B (3.25)� & U 	S��  

�� * F � S G - � F 	 * � F � S G - � D (3.26)

During inflation,
T( � W

, so the condition for inflation isW � &�� 	 * F � S G - � F * � F � S G -�� � (3.27)G � & 	�F � � F  S * 	 � F - (3.28)� & F S M 	 � � F	 � F Q �
(3.29)

as found by Maartens et al. (2000). For F � 	 , this reduces to the standard condition for inflation,G�� & F � S , as in Eq. (2.17). For F � 	 , we have the stronger condition,

G�� & � FS D
(3.30)
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As there is no qualitative change in the definition of inflation, we define the slow-roll conditions

as in Eqs. (2.18) and (2.19): 2
� O?@ �� � �

(3.31)
� T? � � � S J O? � � (3.32)

so that inflation is considered to be taking place when these conditions are satisfied. As before, we

therefore find two equations which describe the dynamics of slow-roll inflation (where approximate

equality denotes equality under the slow-roll conditions),JK �
�
	S��  



� M 2 � �
� 	 Q �

(3.33)S J O? � & � � D
(3.34)

These two equations (combined with their time derivatives, assuming that
...?

is small) enable the

slow-roll conditions (3.31) and (3.32) to be written respectively as

�  

2�� 	 M � �� Q  22 � � � � 	 � 2 �

(3.35)

����
�  

�
	 � � �
�

22 � � � � 	 ���� � 2 D
(3.36)

Following Maartens et al. (2000), we define the slow-roll parameters on the brane as follows:

� L �  

2�� 	 M � �� Q  2 � � � 	* 2 � � � � 	 -  � (3.37)

� L �  

�
	 � � �
�

22 � � � � 	 � (3.38)

which reduce to the standard slow-roll parameters in the low-energy limit. These parameters

are taken from the slow-roll conditions, except that � is slightly different from the expression in

Eq. (3.35)—a change which amounts to increasing it by a factor no greater than 2. The reason for

this alteration is to retain the same equation for � in terms of the slow-roll parameters as in the

standard cosmology, as shown in Eq. (3.65). Slow-roll inflation implies that � � 2
and

� � � � 2
, as

in the standard cosmology.

The number of � -foldings gains an extra factor (shown in parentheses) from Eq. (3.33) to give

(Maartens et al., 2000)

�
� & �
	

�  



��� �� 

�
� �

M 2 � �
� 	 Q �@? � (3.39)

where
? �

and
? �

are the values of the scalar field at the beginning and end of the expansion respec-

tively.
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3.2.2 Growth of structure

There is no change in the equation for the spectrum of scalar perturbations in terms of
J

, which

remains as Eq. (2.46),

�  � � U��� /5M J O? Q M J� 	 Q B  
 � � � (3.40)

�
� 2 � 	
� ��� �




� �
� �  M 2 � �

� 	 Q
� �

(3.41)

under the slow-roll approximation (Maartens et al., 2000). For the tensor perturbations, however,

there is a change from Eq. (2.50). The equation for their spectrum becomes (Langlois et al., 2000;

Huey and Lidsey, 2001)

�  
 � U��� 	 �  



J  ��� * J ����- ���� 
 � � � (3.42)

�
S �

� ��� 




� M 2 � �
� 	 Q �  * J ����- �

(3.43)

where � *,"=- � ��� 2 � "  &E"  �<;�� 2" � � 2 � 2"  
	�� � ��
  (3.44)

� M � 2 � "  &)"@ 8.9<;�
 � � 2"�Q � ��
  � (3.45)

and
�

, the mass scale, is given by � � 2
�



� U 	 	S D
(3.46)

Comparing the equation for
�

with Eq. (3.33) for
J  

shows that"  � J  �  �
� �

	 M 2 � �
� 	 Q D

(3.47)

The equation for
�

simplifies in the high- and low-energy limits. In the low-energy limit,
"  �

� � � 	 � 2
and in the high-energy limit,

"  � * � � 	 -  � 2
. So, in the low-energy limit,�  � M 2 &)"  �<; �" Q � � (3.48)

� 2 �
(3.49)

since � � � ; � for positive � , which implies that
� ��" � �<; * � ��"�-

or
*," � � - �<; * � ��"�- � 2

and hence"  � ; * � ��"=- � � " *," � � - �<; * � ��"�- � � " � 2
. This is as expected, since in the low-energy limit,

the expressions must be the same as those derived without considering the brane-effects. In the
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high-energy limit, using
8.9 ; 
 � � � � � & �

� � �
for small � ,

�� �

�� 2 � M � 	 Q  & M � 	 Q  8.9<; 
 � � 	���� � � (3.50)

�

�� �
	 2 � M 	� Q  & M � 	 Q  M 	� & 	 �� � � Q �� � � (3.51)

� / � 	 M 2 � 	  � �  Q & � 	 � 	� � B � � (3.52)

� M 	� � � 	� � Q � � (3.53)� S �
� 	 � 2 �

(3.54)

as found by Langlois et al. (2000). This may be expected to increase the amplitude of gravitational

waves produced in the high-energy regime, but that is dependent on the value of the scalar field

at which this is evaluated. (This is equivalent to an increase in
�

, since � � is fixed by the COBE

normalization.) As we shall see in Chapter 4, for some potentials the amplitude is increased in the

high-energy limit, whereas for other potentials, there is actually a decrease in the tensor perturba-

tions.

The ratio of tensor to scalar perturbations is defined as before to be

� L 2�� �  

�  � � (3.55)

which Huey and Lidsey (2001) find to obey the same consistency equation as found previously,

� � & �
� 
 � (3.56)

where the tensor spectral index is defined as in the standard case.

For the scalar spectral index, we may derive an expression under the slow-roll approximation,

�
& 2 � � �<; �  �� �<; 3 (3.57)� � �<; �  ��@? �@?� �<; 3 (3.58)

� M � � ; � ��@? & � � ; � �  �@? � � � ; * 2 � � � � 	 - ��@? Q �@?� �<; 3 D (3.59)

In the braneworld scenario, we have� �<; 3 � & �
� (3.60)

� & �
	
�  



�
� �

M 2 � �
� 	 Q �@? D

(3.61)
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Hence,

�
& 2 � & M S � �<; ��@? & � � �<; � ��@? � S � �<; * 2 � � � � 	 -�@? Q �  


�
	 � �� 22 � � � � 	 (3.62)� & M S � �� & � � � �� � � S � � � � 	2 � � � � 	 Q �  

�
	 � �� 22 � � � � 	 (3.63)

� & � �  

2�� 	 M � �� Q  M 22 � � � � 	 � � � � 	* 2 � � � � 	 -  Q� � �  

�
	 M � � �� Q 22 � � � � 	 (3.64)� & � � � � � � (3.65)

as before.

The braneworld scenario, we have found, is a plausible description of the Universe. At low-

energies, such as we experience today, the resulting cosmology is identical to the standard cosmol-

ogy. During the early Universe, particularly during inflation, there may be changes to the pertur-

bations predicted by the standard cosmology, if the energy density is sufficiently high compared

with the brane tension. The task for the rest of this thesis will be to obtain predictions for the

perturbations arising from some specific models of inflation, and to try to ascertain whether these

predictions are compatible with observational constraints.



Chapter 4

Perturbations from Monomial Potentials

Having put in place the required equations, we now turn to consider perturbations arising from

particular potentials. The potential may essentially take any form, but we will restrict our attention

to monomial potentials, i.e., those of the form

� � � ?�� �
(4.1)

where � and � are constants. The exponent, � , is usually an even integer, and we will restrict our

attention to ��� � . The aim will be to predict �
& 2

, the scalar spectral index, and
�

, the relative

amplitude of tensor to scalar perturbations.

With the above potential, the slow-roll parameters may be found from Eqs. (3.37) and (3.38) to

be

� � �  

2�� 	 M � ? Q  2 � � ? � � 	* 2 � � ? � � � 	 -  � (4.2)

� � �  

�
	 � * � & 2 -?  22 � � ? � � � 	 D (4.3)

The brane tension, 	 , may take any value, so the slow-roll parameters satisfy2
� ��� � � � � � (4.4)

with � � � � � in the low-energy limit.

Inflation ends when the slow-roll conditions, � � 2
and

� � � � 2
, no longer both hold. Usually,

inflation is taken to end when �
� 2

(see Section 2.2.2), but, for ease of computation, we will take
� � 2

to mark the end of inflation. This does affect the results, but the differences are negligible in

all that follows.

The number of � -foldings, from Eq. (3.39), becomes

�
� & �
	

�  



�����
	����

?
�
M 2 � � ? �

� 	 Q �@? � (4.5)

where
?��

is the value of the inflaton field � � -foldings before the end of inflation, and
?������

is its

value at the end of inflation.
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4.1 Low- and high-energy limits

The equations simplify significantly in the low- and high-energy limits, in which we may obtain

expressions for �
& 2

and
�

(under the slow-roll approximation) which are independent of 	 , �

and
�

 .

In the low-energy limit, the final term from Eq. (4.3) vanishes, so �
� 2

implies that?  ����� � �  

 � * � & 2 -�
	 D

(4.6)

The term in parentheses in Eq. (4.5) also vanishes, giving

�
� U 	�  


 �
* ?  � & ?  � � � -@D

(4.7)

Hence, ?  � � M �
� � & 2

� Q �  

 �U 	 D

(4.8)

This value of
?

is used to evaluate the slow-roll parameters, which are then substituted into �
& 2 �& � � � � � and

� � 2�� � (the low-energy approximation) to give the desired results, shown below.

In the high-energy limit, we have � ? � � � 	�� 2
. In this case, �

� 2
implies that? � �  ����� � �  


 � * � & 2 -U 	 	
�
D

(4.9)

The equation for the number of � -foldings becomes

�
� U 	�  


 � * � � � - � 	 * ? � �  � &4? � �  ����� -@D (4.10)

Hence, ? � �  � � M
�
� � & 2
� � � Q �  


 � * � � � -U 	 	
�
D

(4.11)

In the high-energy limit, � becomes

� � �  

U 	 	 � �  � � � �  


U 	 �  ? � �  	�
�

(4.12)

and
�

, from Eqs. (3.43), (3.54) and (3.41), is given by

� � 2�� �  

�  � (4.13)

� 2�� �  
� ������

�	� �
 � � �

� �  
�
� ������

���
��� �

���
�  �
�� � (4.14)

� ���  

	 	 � �  � � (4.15)� � U � D (4.16)

As in the low-energy case, the expression for
? � �  � may be used to obtain the slow-roll parameters,

and hence
� � � U � and �

& 2 � & � � � � � .
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Table 4.1: low- and high-energy limits for scalar spectral index, � , and ratio of tensor to scalar perturbations,�
, for potentials � � ��� . The end of inflation is defined by ��� � and the number of � -foldings is taken to

be 55.

� �	� ��
 & 2 �	� � � � & 2 � � �

 � � � � �
� & W D W S � & W D W U � W D 2 U5U W D � 2 �
U & W D W �5S & W D W � U W D � � S W D � �5�
� & W D W � W & W D W � � W D U 2 � W D S � U� & W D W+� � & W D W � 2 W D � U � W D S U �

The expressions for �
& 2

and
�

in both limits are therefore:1

�	� ��
 & 2 � & � � �
� �

& 2 � �
�

(4.17)

�	� � � � & 2 � & U � � �* � � � - �
& 2 � �

�
(4.18)

� � ��
 � � �
� �

& 2 � �
�

(4.19)

� � � � � � � U �* � � � - �
& 2 � �

D
(4.20)

In Table 4.1, numerical results in these limits are shown for a variety of potentials. This is plotted

in Fig. 5.2, which shows the high- and low-energy limits for potentials of exponent � � �
, and

enables these predictions to be compared with observational constraints.

In the limit as � tends to infinity, in the high-energy regime the scalar spectral index tends to

�	� � � � & 2 � U
�
� 2 � (4.21)

which corresponds to steep inflation driven by an exponential potential (Copeland et al., 2001). In

this model, the potential takes the form

�P* ?�- � � � �����
M & � �
	 � ?
�


Q �

(4.22)

where � is a constant. This is also called power law inflation, since (in the low-energy limit) the

scale-factor obeys a power law,
( � $ ��
 � �

. In the standard inflationary scenario, this potential will

only produce inflation if �  � � . However, Copeland et al. (2001) find that the braneworld scenario

can support inflation for any value of � , and also that the resulting perturbations are independent of

the brane tension, 	 (as long as inflation takes place entirely in the high-energy regime). Inflation

ends when � � 2
and is followed by reheating, which takes place by gravitational particle produc-

tion. An alternative method of reheating for steep inflation has recently been proposed, and will be

discussed in Chapter 5.

1Taking ����� to be the end of inflation produces similar results, except that in the low-energy case, the denominator

becomes ��������� ���"! , and in the high-energy case, the denominator becomes �$# �%���'&(����� ! . They are hence

unchanged for a quadratic potential in the low-energy limit, where )*�+� .
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4.2 Number of e-foldings

Before being able to find results for any value of the brane tension, and not merely in the high- and

low-energy limits, it is necessary to fix � , the number of � -foldings.

Liddle and Leach (2003) considered the number of � -foldings before the end of inflation at

which observable perturbations were generated. This is related to � � � � , the number of � -foldings

corresponding to the era at which the comoving Hubble length took the same value that it takes

today. At that time, the comoving scale,
3

, was equal to the present Hubble scale,
( � J �

. They

found a plausible upper limit on � � � � equal to 60, with that limit raised to 64 in the special case of

a quartic potential. The number of � -foldings, � , relating to the perturbations of interest is roughly

4 below ��� � � , as will be discussed below.

It may be asked whether � is changed by much when braneworld effects become significant.

From Eq. (7) of Liddle and Leach (2003) we have, assuming instantaneous reheating, in the standard

cosmology,

�
�
�
�� � � � 2U � ; F � �� � � � � �<; �
	 � � � �S��  




2J �
�

���<; � 2 � � ����D (4.23)

In the braneworld cosmology, as a ‘worst-case scenario’ we consider the high-energy regime con-

tinuing until matter-radiation equality. Then the actual braneworld effects will change the number

of � -foldings by no more than in this case. (In actual fact, the high-energy regime must be over

by nucleosynthesis, which took place much earlier. Matter-radiation equality is chosen to simplify

the calculations.) Taking the changes into account, Eq. (4.23) still holds, except for an extra term

under the square root, from Eq. (3.33) with
� � 	 . (Although the expansion during the radiation

era becomes
( � $ ��
 


if it takes place in the high-energy regime—rather than the usual
( � $ ��
  

—

it is the density as a function of scale factor that enters the equations: this remains unchanged asF � ( � 

.) In the high-energy case, we therefore have

�
�
�
�� � � � 2U �<; F � �� � � � ���<; �
	 � � � �S��  




� � � �� 	
2J �
�

���<; � 2 � � ��� � (4.24)

This leads to a maximum number of � -foldings of

�
�
�
�� � � � � � D � � 2U �<; � � � �� 





M � � � �� 	 Q  � (4.25)

which differs from Eq. (8) of Liddle and Leach (2003) only in the term in parentheses. Next, from

Eq. (3.37), in the high-energy limit, � gains a factor of
* U 	 � � - . The perturbation amplitude,

� ��� � ,
(which is the same as

� 	 � ��� �  � � U , cf. Eq. [3.41]) gains a factor of
* � � � 	 - � , so these combine to

give

� ��� � � 2�� �S�� 




2
�
M �� 	 Q  � (4.26)

� � �  

2�� 	 M � �� Q  M U 	� Q �

(4.27)
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which correspond to Eqs. (9) and (10) of Liddle and Leach (2003), differing only in the final terms

in parentheses, and an extra factor of 2 in the first equation. With
� ��� � � � D �

�
2 W ���

(Leach and

Liddle, 2003a), i.e., the COBE normalization, this gives,

�
�
�
�� � � � � � D � � 2U �<; S2�� � ��� � � (4.28)� � � D � � 2U �<; M S2�� � � D � � 2 W ��� Q � 2U �<; � (4.29)� �5S D 2 � 2U �<; � � (4.30)

which is very similar to Eq. (11) in Liddle and Leach (2003), where the low-energy result is given

as

�
�
�
�� � � � �5S D S � 2U �<; � D (4.31)

It is found from results to be derived later on that � takes values between 0.0090 and 0.0101 for

the quadratic potential, and between 0.0120 and 0.0184 for the quadratic potential, over the whole

range of values of 	 . Hence
�<; � is virtually unchanged between the standard cosmology and the

high-energy case, so it follows that the plausible upper limit on the number of � -foldings required

is essentially the same in both the standard and braneworld cosmologies.

From the same paper, Liddle and Leach find that we also need to take into account a reduction

of energy density at the end of inflation, and a reduction in energy density during reheating. These,

respectively, would increase the number of � -foldings by a small amount (not likely to be much

more than one) and decrease the number of � -foldings by roughly
� � �

. With the above values of
� , which give

�


�<; � � & 2

, we have,

� � � � � �5S & 2 � 2 & � � �
(4.32)� � � � �
(4.33)

which is approximated to
��� � �

in their paper.

In the quartic case, however, they found that more precision is possible in estimating the num-

ber of � -foldings. This is because reheating in this potential obeys the same expansion law as in

radiation domination. They obtained �
���
� � � � �� � � � � U .

We also have to take into account the sort of scale on which we will evaluate our constraints,

which is considerably smaller than the present Hubble horizon. The relevant scale for our ob-

servations is
3 � W D W 2

Mpc
� �

(Leach and Liddle, 2003b), and the present Hubble horizon is( � J � � 2 W5W �
km s

� �
Mpc

� � � � � S W5W5W
Mpc

� �
(since the speed of light,

S
�
2 W �

km s
� �

, is equal

to 1 in our units), where
� � W D �

. Hence, from Liddle and Leach (2003, Eq. 6),

�
* 3�- � & � ; 3( � J � � ��� � � (4.34)

� & U � � � � � D (4.35)

In the general case, this gives �
� � U � �

and in the quartic case this gives �
� � W

.
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Table 4.2: As Table 4.1, but only showing the quadratic potential, with different values of
�

, the number of

� -foldings.

� �	� ��
 & 2 �	� � � � & 2 � � ��
 � � � � �
� W & W D W U W & W D W � W W D 2�� � W D �5S �
��� & W D W S � & W D W U � W D 2 U5U W D � 2 �
� W & W D W S5S & W D W U 2 W D 2 S � W D 2 � �

Table 4.3: As Table 4.1, but only showing the quartic potential, with different values of
�

, the number of

� -foldings.

� �	� ��
 & 2 �	� � � � & 2 � � ��
 � � � � �
��� & W D W �5S & W D W � U W D � � S W D � �5�
� W & W D W U � & W D W � W W D � � W W D � � U

For simplicity, in all the following we therefore take �
� ���

as a reasonable fiducial value, but

will consider alternative values.

This approximation has very little effect on the high- and low-energy results as compared with

�
� � U , but there is the uncertainty of roughly 5 in either direction. The effect of this uncertainly

on the perturbations is shown in Table 4.2, where values of � ranging from 50 to 60 are considered.

For the quartic potential, with �
� � W

and � � U , there is a difference compared with �
� ���

of approximately 10%, as shown in Table 4.3. The results shown in both of these tables, along

with the intermediate points, are shown in Fig. 5.3, where a comparison is made with observations

(discussed in Chapter 5).

4.3 Varying brane tension with quadratic and quartic potentials

As well as the high- and low-energy limits, it will also be useful to obtain results for the intermediate

regime, where the brane tension is comparable to the potential. Owing to the complexity of the

equations, this has only proved possible for � � � and 4, but this is sufficient, since it turns out that

potentials of a higher exponent are excluded by the data (see Chapter 5).

The first step in finding � and
�

in terms of 	 is to find the value of the scalar field at the end of

inflation,
?������

, in terms of � and 	 . From Eq. (4.3), � is a function of
?

, � and 	 , so this equation

may be solved for
?

with � � 2
(analytically, using Maple: see Appendix A) to obtain

? ������* � � 	 - .
Second, it is necessary to find the value of the inflaton field when the observable perturbations

were produced. Eq. (3.39) is an equation for � in terms of � , 	 ,
? �����

and
? �

, where
? �

is the

value of the scalar field � � -foldings before the end of inflation. Having chosen �
� ���

, and
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Figure 4.1: � against
�������

for quadratic and quartic potentials, satisfying constraints from COBE. � � has

been set to be equal to 1.

having found
?�������* � � 	 - , this equation may be solved to get

?
� �
* � � 	 - . (It didn’t prove possible to

solve this equation for � higher than 4, which is why the complete results are only presented for two

simple potentials.) It is this value of
?

which is then used to calculate � and
�

in terms of � and 	 .

Again, this is done analytically, using Maple. The Maple program is reproduced in Appendix A.

The final step to obtain �
* 	 - and

� * 	 - is to impose the COBE normalization, in the form

� � � �
�
2 W ���

(Bunn et al., 1996, see Section 2.2.4). Eq. (3.41) for �  � , which is evaluated at? � ?
� � , can be solved using this constraint to give � * 	 - . This leaves 	 as the only free parameter

when determining the predicted perturbations.

For both the quadratic and quartic potentials, it did not prove possible to solve the equation

for � � using Maple, either analytically or numerically, so it was necessary to transfer the relevant

formulae to Matlab, which has more sophisticated numerical solution algorithms. The expressions

generated by the Maple program for �  � * � � 	 - , �
* � � 	 - and

� * � � 	 - were made into Matlab m-

files. Matlab was then used to numerically solve �  � � U � 2 W � � � (the COBE normalization) for

a range of different values of 	 to give � * 	 - . � and
�

were then evaluated at these values of 	 to

give the results. Appendix B contains the Matlab program for the quadratic potential.

Fig. 4.1 shows how � scales against 	 for the quadratic and quartic potentials. The plot for the

quadratic case may be contrasted with Fig. 1 of Maartens et al. (2000), which shows the same but

with �
� 2

marking the end of inflation.

Fig. 4.2 shows the predicted perturbations for the quadratic and quartic potentials as a function

of the brane tension. They show that, for the quadratic potential, high energies (i.e., small values

of 	 ) push the perturbations further from scale-invariance than in the low-energy limit, whereas,

for the quartic potential, there is little difference between the high- and low-energy cases. In the

intermediate regime, where the brane tension is comparable to the potential, the perturbations are

driven further from scale-invariance than in either of the limits, for both potentials. In Fig. 5.1 these

results are given on a plot of
�

against �
& 2

and compared with observations.

It has been claimed that braneworld effects ought to drive the perturbations towards the scale-
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Figure 4.2: Theoretical predictions for ��� � and
�

against
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for quadratic and quartic potentials. The

models are all normalized to give the correct perturbation amplitude, and � � has been set to be equal to 1.

(Figure as in Liddle and Smith, 2003.)

invariant Harrison–Zel’dovich spectrum for any potential (Maartens et al., 2000). For certain po-

tentials, however, taking the details of the argument into account, I have found that this is not

the case, with the perturbations at times being driven further from scale-invariance by braneworld

corrections.



Chapter 5

Comparison with Observations

We are now in a position to test certain models of braneworld inflation against observations. We

will compare the predictions of Chapter 4 with the observational constraints found by Leach and

Liddle (2003b), as discussed in Section 2.2.4.

The cosmological data set used to obtain the constraints was taken from a variety of sources,

from observations both of the cosmic microwave background and of galaxy clustering. These were

the VSA (Very Small Array), CBI (Cosmic Background Imager), ACBAR (Arcminute Cosmology

Bolometer Array Receiver) and WMAP (Wilkinson Microwave Anisotropy Probe) observations of

the CMB, and the 2dF Galaxy Redshift Survey.

In Fig. 5.1, the predicted values shown in Fig. 4.2 are plotted on the � –
�

plane, with 	 varying

along the thick curves. Scale-invariance corresponds to the bottom-right of the figure. It may be

seen that braneworld effects in the quadratic and quartic potentials move the perturbations further

from scale-invariance, and that the effect is strongest in the intermediate regime, i.e., when the

brane tension is comparable to the energy of the potential during inflation. The quartic potential

may be seen to lie outside the three-sigma contour for all values of the brane tension, but this must

be interpreted bearing in mind the uncertainty in the number of � -foldings (see Fig. 5.3). In fact,

both of the curves should be somewhat blurred for this reason.

Fig. 5.2 shows how the high- and low-energy limits vary with the exponent of the potential.

The points on the curves are calculated using Eqs. (4.17)–(4.20). Although the intermediate points

have not been calculated for exponent higher than four, it is expected that they would form curves

between the high- and low-energy points in much the same way as in the quadratic and quartic

cases, as shown in Fig. 5.1. It may be seen that potentials of exponent higher than 4 lie comfortably

outside the permitted range of values. In particular, the high- � limit in the high-energy case (steep

inflation) is ruled out.

However, Liddle and Urena-Lopez (2003) have suggested an alternative method of reheating for

the steep inflation model, which might bring that model back into the region allowed by observa-

tions. They note that the original steep inflation model, in which inflation is followed by a period
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Figure 5.1: Theoretical predictions compared to observational constraints for the quadratic and quartic

potentials, as a function of the brane tension
�

, with
� � ��� . The low- and high-energy limits are shown.

The observational contours are one-, two- and three-sigma confidence levels. (Figure as in Liddle and Smith,

2003, with observational constraints provided by Sam Leach.)
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Figure 5.2: As Fig. 5.1, but now showing the low-energy limit (dotted line) and high-energy limit (solid

line) as functions of � , for ����� . The locations corresponding to � being an even integer are highlighted, as

is the large- � limit in the high-energy case. The number of � -foldings is fixed to be 55. (Figure as in Liddle

and Smith, 2003.)



Comparison with Observations 40

 ← φ4 L.E. N = 55

 ← φ4 L.E. N = 60

φ4 H.E. N = 55 → 

φ4 H.E. N = 60 → 

 ← φ2 L.E. N = 50
 ← φ2 L.E. N = 55

 ← φ2 L.E. N = 60

φ2 H.E. N = 50 → 

φ2 H.E. N = 55 → 
φ2 H.E. N = 60 → 

n−1

R

−0.1 −0.09 −0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 5.3: As Fig. 5.1, but showing the effect of varying the number of � -foldings on the high- and low-

energy perturbations generated by the quadratic and quartic potentials. The points corresponding to
� � � � ,

55 and 60 in both limits are shown for the quadratic potential, and those corresponding to
� � ��� and 60

are shown for the quartic potential.

of reheating involving gravitational particle production, does not agree with observations, since it

produces an excessive amplitude of long-wavelength gravitational waves, and because the resulting

perturbations are too far from scale-invariance. Instead, it is proposed that an alternative method

of reheating, driven by a curvaton field, may help to solve these difficulties. The curvaton is a

field which may have existed along with the inflaton field, and which may have been responsible

for density perturbations.

Fig. 5.3 shows the effect of the uncertainty in the number of � -foldings on the predictions gen-

erated by the two potentials (as discussed in Section 4.2, and as shown in Tables 4.2 and 4.3).

For the quartic potential, �
� � W

corresponds to the more accurate estimate made possible by

the unusual properties of the reheating era under this potential, and �
� ���

is the approximation

used in the other results. Taking the higher value for the number of � -foldings brings the low- and

high-energy limits within the three-sigma contour, but still outside of the two-sigma contour. For

the quadratic potential, the low-energy limit is comfortably within the observational constraints for

all value
� W � � � � W , but the high-energy limit comes under fairly strong pressure for a small

number of � -foldings.

In the paper from the WMAP team detailing the implications for inflation (Peiris et al., 2003),

the
? 


potential is ruled out as lying at more than three-sigma away from the maximum likelihood

point. However, the number of � -foldings they quote on p. 8 is �
� � W

—probably significantly too

small. Barger et al. (2003) analysed the WMAP data and found that—for the WMAP data alone—
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this three-sigma constraint only holds for � � U � . A larger number of � -foldings would place less

pressure on this potential. The quartic potential does come under significant observational pressure,

but not as strong pressure as has been claimed.

More recently, Kinney et al. (2003) have claimed that the quartic potential is ruled out at three-

sigma for all values of � less than 66. However, Leach and Liddle (2003b) advise interpreting the

results of this paper with caution (since they use the Monte-Carlo flow reconstruction technique,

whereas Leach and Liddle use the Markov Chain Monte Carlo method) and in their Fig. 5 give

constraints on the
? 


potential in the low-energy limit which agree with my Fig. 5.3. (They take

�
� � W

as a maximum in that figure.)

For the low-energy limit, Leach and Liddle (2003b) found that the exponent, � , of the potential

is constrained at different confidence levels to be

� � U D S � S��
� � S D � � ���

� � � D ��� 2�� D
(5.1)

The results in this chapter show that (assuming �
� ���

) the constraint on the exponent is tighter in

the high-energy limit, at one-, two- or three-sigma, than in the low-energy limit. This is clear from

Fig. 5.2. The exponent in this case is bounded above by some value between 2 and 4, depending

on the accuracy required. In the intermediate regime, where the brane tension is comparable to the

inflationary energy scale, it has been found that the quadratic and quartic potentials come under

stronger observational pressure that in either of the limits, and the quartic potential is strongly ruled

out in the majority of this region.



Chapter 6

Conclusions

6.1 Summary of results

We have seen that the perturbations generated by a given potential in the Randall–Sundrum type

II braneworld are dependent on the brane tension. In particular, predictions for the scalar spectral

index and relative strength of tensor perturbations have been found for monomial potentials in

the high- and low-energy limits, and for the quadratic and quartic potentials for any value of the

brane tension. These results have been compared with observations, including WMAP, enabling

constraints to be placed on models of braneworld inflation.

It may be expected, given the additional friction in the Friedmann equation, that braneworld

effects would drive the perturbations nearer to scale-invariance. I have found that this is not neces-

sarily the case, particularly when the inflationary energy scale is comparable to the brane tension. I

have also found that the constraint on the exponent of monomial potentials is strengthened by brane

effects, and also that the original steep inflation model is excluded by the data.

Does this make it possible to fix the value of the brane tension? If we knew the exact form of

the potential, we would (in principle) be able to determine the brane tension from observations. But

the potential may take essentially any form, and we do not know the form that it takes. Indeed,

Liddle and Taylor (2002) have shown that it is not possible to reconstruct the inflaton potential

from the initial perturbations. That is, given the spectra of perturbations, for any value of the brane

tension, there exists a potential which will produce those perturbations. This follows from the

consistency equation, (3.56), which reduces the number of independent inflationary parameters and

hence introduces some degeneracy.

This degeneracy is found when considering the initial perturbations only. However, there may

be effects caused by the braneworld on the subsequent evolution of these perturbations. The details

of this are presently unknown, but this may offer some hope of reconstructing the potential from

observations of large-scale structure, for example.

The Randall–Sundrum braneworld would also affect gravity on very small scales. Experiments
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have tested gravity down to 0.1 mm (Long et al., 2003), and no departure from Newtonian gravity

has been detected. These experiments would place a constraint on the brane tension, which will

become more strict as experiments probe smaller length scales.

6.2 Alternative models

It would be a mistake to give the impression that the Randall–Sundrum braneworld investigated

here is the only viable braneworld model, or even that inflation is universally accepted. In reality

the situation is more complicated.

In the Randall–Sundrum type II braneworld, we have taken the bulk to possess a cosmological

constant only. This is not a necessary restriction on braneworld models. For example, there may

be a scalar field in the bulk (see, for example, Himemoto and Sasaki, 2001). This would add to the

complexity of the model, but it is conceivable that such a field may have left traces in the CMB or

large-scale structure (Rhodes et al., 2003).

Other models exist (for a review, see Brax and van de Bruck, 2003), in which there may be more

than one brane, or in which the branes may be moving, or even colliding.

A radically different model featuring colliding branes is the Ekpyrotic model of Khoury et al.

(2001). This has the Big Bang caused by the collision of two branes. In an extension to this,

the Cyclic Universe, these branes collide repeatedly, over a very long period of time, causing a

succession of many Big Bangs. It is claimed that this model would solve the classic problems of the

(non-inflationary) Big Bang cosmology without invoking a period of inflationary expansion. It also

seeks to explain the cosmological constant problem of inflation, of why the current cosmological

constant is so small, by incorporating the cosmological constant as a fundamental component of the

theory.

Brandenberger (2001) has outlined some of the problems of the inflationary paradigm. For

example, he notes that scales of cosmological interest today would correspond to lengths shorter

than the Planck length at the start of inflation. However, physical properties on such length scales are

not well understood at present. There is therefore a need to develop a proper string cosmology, using

more detailed predictions from string/M-theory. This will have to follow from a more complete

understanding of those theories, which is likely to take many years.

6.3 Future prospects

Despite the vast number of alternative models, the Randall–Sundrum type II braneworld is still a

useful model to consider. It has a simplicity which enables details to be investigated—and simplicity

is a good thing in a theoretical physics. It also has the obvious advantage that it gives ‘ordinary’

gravity at low energies.

Forthcoming observations will help to constrain braneworld inflationary models, even if they
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do not completely remove the degeneracies. In terms of the CMB, the WMAP mission is yet to

be completed, and more accurate data are to be released in the not-too-distant future. The Planck

satellite1 is intended to measure the anisotropies in the microwave background to an even higher

degree of accuracy. This is scheduled to be launched in 2007. Measurements of the polarization of

the CMB (e.g., by Planck and by MAXIPOL2) may also help constrain the inflationary parameters,

particularly those relating to primordial gravitational waves. It is also hoped that gravitational

waves may be detected directly in the near future, for example by LISA3 (Laser Interferometer

Space Antenna).

1http://astro.estec.esa.nl/Planck/

2http://groups.physics.umn.edu/cosmology/maxipol/

3http://lisa.jpl.nasa.gov/
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Appendix A

Maple V Program

This program generates (very long) expressions for �  � , � and
�

, which are then used by the Matlab

program (Appendix B) to generate the plots shown in the main body of the text.

With V = alpha*phiˆ(2*beta), given beta, solve eta=1 and

N=55 to obtain A Sˆ2, n and R in terms of lambda and alpha

Find phi 55 in terms of lambda and alpha

**NB different from thesis text, where V = m*phiˆalpha**
� restart:

Make assumptions about alpha, or it won’t solve for phififtysq
� assume(alpha,real):

� assume(alpha>0):

� assume(phisq,real):
� assume(phisq>0):

� assume(lambda,real):
� assume(lambda>0):

Execute these lines to check that chosen solutions for phififtysq and phiendsq are positive
� alpha:=1e-10:

lambda:=1e-12:

Choose value of beta: V=alpha*phiˆ(2*beta)
� beta:=2:
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Definitions
� mfour:=1:

V:=alpha*phisqˆbeta:

Vprimesq:=4*alphaˆ2*betaˆ2*phisqˆ(2*beta-1):
� Vdoubleprime:=2*alpha*beta*(2*beta-1)*phisqˆ(beta-1):

� Hsq:=8*Pi*V*(1+V/(2*lambda))/(3*mfourˆ2):
� epsilon:=(mfourˆ2/(16*Pi))*(Vprimesq/Vˆ2)*(2*lambda*(2*lamb

da+2*V)/(2*lambda+V)ˆ2):
� eta:=(mfourˆ2/(8*Pi))*(Vdoubleprime/V)*(2*lambda/(2*lambda+

V)):

NB d(phisq) rather than d(phi). Also phififtysq really phi 55ˆ2
� N:=-8*Pi/mfourˆ2*int(V/sqrt(Vprimesq)*(1+V/2/lambda)/2/sqrt

(phisq),phisq=phififtysq..phiendsq):

Solve for phi at end of inflation (change suffix to get a positive root) (beta=1: [1]; beta=2: [1])
� solve(1 = eta,phisq);

� phiendsq := solve(1 = eta,phisq)[1];

Solve for phi at 55 e-folding before end of inflation (change suffix for +ve root) (beta=1: [1];

beta=2: [1])
� phififtysqsol:=solve(55=N,phififtysq);

� phisq:=phififtysqsol[1];

Display expressions for n, A Sˆ2 and R, for numerical solution and eval-

uation using Matlab

Definitions again, with phi=phi 55, which is a function of lambda and alpha
� V:=alpha*phisqˆbeta:

Vprimesq:=4*alphaˆ2*betaˆ2*phisqˆ(2*beta-1):
� Vdoubleprime:=2*alpha*beta*(2*beta-1)*phisqˆ(beta-1):
� epsilon:=(mfourˆ2/(16*Pi))*(Vprimesq/Vˆ2)*(2*lambda*(2*lamb

da+2*V)/(2*lambda+V)ˆ2):
� eta:=(mfourˆ2/(8*Pi))*(Vdoubleprime/V)*(2*lambda/(2*lambda+

V)):

Displays n in terms of lambda and alpha
� n := 1-6*epsilon+2*eta;

More definitions
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� Hsq:=8*Pi*V*(1+V/(2*lambda))/(3*mfourˆ2):

mu:=sqrt(4*Pi/3*lambda)/mfour:

x:=sqrt(Hsq)/mu:

Fsq:=1/(sqrt(1+xˆ2)-xˆ2*ln(1/x+sqrt(1+1/xˆ2))):

ATsq:=4*Hsq*Fsq/(25*Pi*mfourˆ2):

Displays A Sˆ2 in terms of lambda and alpha
� ASsq:=512*Pi*Vˆ3*(1+V/(2*lambda))ˆ3/(75*mfourˆ6*Vprimesq);

Displays R in terms of lambda and alpha
� R:=16*ATsq/ASsq;



Appendix B

Matlab 6 Program

This program generates the plots for the quadratic potential. (The program for the quartic potential

is almost identical.) assq2, ncalc2 and rcalc2 are m-files which contain the expressions

generated by the Maple program (Appendix A), with beta=1. assq2 takes lambda and alpha

and returns �  � & U � 2 W � � � , so assq2=0 corresponds to the COBE normalization.

% With N=55 and R=16(A_Tˆ2/A_Sˆ2), V=alpha phiˆ2

% Generates plots for alpha, n and R in terms of lambda

% and plot of n against R

global lambda

lfourth=logspace(-4,-1);

eps=1e-30;

for i=1:50

lambda=lfourth(i)ˆ4;

alpha(i)=fsolve(@assq2,1e-10,optimset(’TolX’,1e-30,...

’TolFun’,1e-50));

end

alpha(50)

figure

loglog(lfourth,alpha)

title(’\alpha for V = \alpha\phiˆ2’)

xlabel(’\lambdaˆ{1/4}’)

ylabel(’\alpha’)

for i=1:50

n2(i)=ncalc2(alpha(i),lfourth(i)ˆ4);

end
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n2(50)

figure

semilogx(lfourth,n2)

title(’n for V = \alpha\phiˆ2’)

xlabel(’\lambdaˆ{1/4}’)

ylabel(’n’)

for i=1:50

r2(i)=rcalc2(alpha(i),lfourth(i)ˆ4);

end

r2(50)

figure

semilogx(lfourth,r2)

title(’r for V = \alpha\phiˆ2’)

xlabel(’\lambdaˆ{1/4}’)

ylabel(’r’)

figure

plot(n2-1,r2)

title(’n and r for V = \alpha\phiˆ2’)

xlabel(’n-1’)

ylabel(’r’)
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